Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits
نویسندگان
چکیده
The quantum Fourier transform (QFT), a quantum analog of the classical Fourier transform, has been shown to be a powerful tool in developing quantum algorithms. However, in classical computing there is another class of unitary transforms, the wavelet transforms, which are every bit as useful as the Fourier transform. Wavelet transforms are used to expose the multi-scale structure of a signal and are likely to be useful for quantum image processing and quantum data compression. In this paper, we derive efficient, complete, quantum circuits for two representative quantum wavelet transforms, the quantum Haar and quantum Daubechies D(4) transforms. Our approach is to factor the classical operators for these transforms into direct sums, direct products and dot products of unitary matrices. In so doing, we find that permutation matrices, a particular class of unitary matrices, play a pivotal role. Surprisingly, we find that operations that are easy and inexpensive to implement classically are not always easy and inexpensive to implement quantum mechanically, and vice versa. In particular, the computational cost of performing certain permutation matrices is ignored classically because they can be avoided explicitly. However, quantum mechanically, these permutation operations must be performed explicitly and hence their cost enters into the full complexity measure of the quantum transform. We consider the particular set of permutation matrices arising in quantum wavelet transforms and develop efficient quantum circuits that implement them. This allows us to design efficient, complete quantum circuits for the quantum wavelet transform.
منابع مشابه
Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملNumerical stability of fast trigonometric and orthogonal wavelet transforms
Fast trigonometric transforms and periodic orthogonal wavelet transforms are essential tools for numerous practical applications. It is very important that fast algorithms work stable in a floating point arithmetic. This survey paper presents recent results on the worst case analysis of roundoff errors occurring in floating point computation of fast Fourier transforms, fast cosine transforms, a...
متن کاملEfficient Quantum Transforms
Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملFast algorithms for discrete and continuous wavelet transforms
Several algorithms are reviewed for computing various types of wavelet transforms: the Mallat algorithm, the “a trous” algorithm and their generalizations by Shensa. The goal is 1) to develop guidelines for implementing discrete and continuous wavelet transforms efficiently, 2) to compare the various algorithms obtained and give an idea of possible gains by providing operation counts. The compu...
متن کامل